THE SGP MODEL

The NORAD mean element sets can be used for prediction with SGP. All symbols not defined below are defined in the list of symbols in Section Twelve. Predictions are made by first calculating the constants

#math10#

a1 = #tex2html_wrap_indisplay3560##tex2html_wrap_indisplay3561##tex2html_wrap_indisplay3562#

#math11#

δ1 = #tex2html_wrap_indisplay3564#J2#tex2html_wrap_indisplay3565##tex2html_wrap_indisplay3566#

#math12#

ao = a1#tex2html_wrap_indisplay3568#1 - #tex2html_wrap_indisplay3569#δ1 - δ12 - #tex2html_wrap_indisplay3572#δ13#tex2html_wrap_indisplay3575#

#math13#

po = ao(1 - eo2)

#math14#

qo = ao(1 - eo)

#math15#

Lo = Mo + ωo + Ωo

#math16#

#tex2html_wrap_indisplay3582# = - #tex2html_wrap_indisplay3583#J2#tex2html_wrap_indisplay3584#nocos io

#math17#

#tex2html_wrap_indisplay3586# = #tex2html_wrap_indisplay3587#J2#tex2html_wrap_indisplay3588#no(5 cos2io - 1).

The secular effects of atmospheric drag and gravitation are included through the equations

#math18#

a = ao#tex2html_wrap_indisplay3590##tex2html_wrap_indisplay3591##tex2html_wrap_indisplay3592#

#math19#

e = #tex2html_wrap_indisplay3594##tex2html_wrap_indisplay3595##tex2html_wrap_indisplay3596#

#math20#

p = a(1 - e2)

#math21#

Ωso = Ωo + #tex2html_wrap_indisplay3599#(t - to)

#math22#

ωso = ωo + #tex2html_wrap_indisplay3601#(t - to)

#math23#

Ls = Lo + #tex2html_wrap_indisplay3603#no + #tex2html_wrap_indisplay3604# + #tex2html_wrap_indisplay3605##tex2html_wrap_indisplay3606#(t - to) + #tex2html_wrap_indisplay3607#(t - to)2 + #tex2html_wrap_indisplay3608#(t - to)3

where (t - to) is time since epoch.

Long-period periodics are included through the equations

#math24#

ayNSL = e sinωso - #tex2html_wrap_indisplay3611##tex2html_wrap_indisplay3612##tex2html_wrap_indisplay3613#sin io

#math25#

L = Ls - #tex2html_wrap_indisplay3615##tex2html_wrap_indisplay3616##tex2html_wrap_indisplay3617#axNSLsin io#tex2html_wrap_indisplay3618##tex2html_wrap_indisplay3619##tex2html_wrap_indisplay3620#

where

#math26#

axNSL = e cosωso.

Solve Kepler's equation for E + ω (by iteration to the desired accuracy), where

#math27#

(E + ω)i+1 = (E + ω)i + Δ(E + ω)i

with

#math28#

Δ(E + ω)i = #tex2html_wrap_indisplay3625#

#math29#

U = L - Ωso

and

#math30#

(E + ω)1 = U.

Then calculate the intermediate (partially osculating) quantities

#math31#

e cos E = axNSLcos(E + ω) + ayNSLsin(E + ω)

#math32#

e sin E = axNSLsin(E + ω) - ayNSLcos(E + ω)

#math33#

eL2 = (axNSL)2 + (ayNSL)2

#math34#

pL = a(1 - eL2)

#math35#

r = a(1 - e cos E)

#math36#

#tex2html_wrap_indisplay3638# = ke#tex2html_wrap_indisplay3639#e sin E

#math37#

r#tex2html_wrap_indisplay3641# = ke#tex2html_wrap_indisplay3642#

#math38#

sin u = #tex2html_wrap_indisplay3644##tex2html_wrap_indisplay3645#sin(E + ω) - ayNSL - axNSL#tex2html_wrap_indisplay3646##tex2html_wrap_indisplay3647#

#math39#

cos u = #tex2html_wrap_indisplay3649##tex2html_wrap_indisplay3650#cos(E + ω) - axNSL + ayNSL#tex2html_wrap_indisplay3651##tex2html_wrap_indisplay3652#

#math40#

u = tan-1#tex2html_wrap_indisplay3654##tex2html_wrap_indisplay3655##tex2html_wrap_indisplay3656#.

Short-period perturbations are now included by

#math41#

rk = r + #tex2html_wrap_indisplay3658#J2#tex2html_wrap_indisplay3659#sin2iocos 2u

#math42#

uk = u - #tex2html_wrap_indisplay3661#J2#tex2html_wrap_indisplay3662#(7 cos2io -1)sin 2u

#math43#

Ωk = Ωso + #tex2html_wrap_indisplay3664#J2#tex2html_wrap_indisplay3665#cos iosin 2u

#math44#

ik = io + #tex2html_wrap_indisplay3667#J2#tex2html_wrap_indisplay3668#sin iocos iocos 2u.

Then unit orientation vectors are calculated by

#math45#

#tex2html_wrap_indisplay3670# = #tex2html_wrap_indisplay3671#sin uk + #tex2html_wrap_indisplay3672#cos uk

#math46#

#tex2html_wrap_indisplay3674# = #tex2html_wrap_indisplay3675#cos uk - #tex2html_wrap_indisplay3676#sin uk

where

#math47#

#tex2html_wrap_indisplay3678# = #tex2html_wrap_indisplay3679##tex2html_wrap_indisplay3680##tex2html_wrap_indisplay3681#

#math48#

#tex2html_wrap_indisplay3683# = #tex2html_wrap_indisplay3684##tex2html_wrap_indisplay3685##tex2html_wrap_indisplay3686#.

Then position and velocity are given by

#math49#

#tex2html_wrap_indisplay3688# = rk#tex2html_wrap_indisplay3689#

and

#math50#

#tex2html_wrap_indisplay3691# = #tex2html_wrap_indisplay3692##tex2html_wrap_indisplay3693# + (r#tex2html_wrap_indisplay3694#)#tex2html_wrap_indisplay3695#.

A FORTRAN IV computer code listing of the subroutine SGP is given below. #center3696#